柔性传感器技术是极具挑战和潜力的发展方向,在人工智能、医疗健康等领域有着广阔的发展前景。随着人机交互、运动健康监控等细分领域的快速发展,相关产品对传感器提出了更高的要求,迫切需要具有柔韧、可弯曲、可拉伸、可回复特性的弹性传感技术,以满足人体穿戴舒适性的需求。研究人员依托中国科学院宁波材料技术与工程研究所、中科院磁性材料与器件重点实验室,针对上述需求,聚焦信息感知关键弹性传感器和信息传输关键弹性导体的研发。
复合型导高分子是在高分子基体中填加导电性物质(碳黑、碳纳米管、石墨烯、金属粉、金属纳米线和纳米片等),通过分散复合、层积复合等方式得到的。由于它保持了高分子材料优异的柔弹性,是目前柔性电子元器件最为理想的电极材料。但由于导电填料为固体,与基体的弹性模量相差很大(3~7 个量级),拉伸时导电填料的间距会发生变化,造成电极的电阻率明显变化,影响器件性能。
为了解决该问题,研究团队采用易形变且导电性好的液态金属镓铟锡(Galinstan)作为导电填料,与 PDMS 分散复合制备了弹性电极。该电极不仅具有良好的导电性()和大的拉伸极限(~116.86%),更为重要的是,该电极具有极其稳定的机械性能,拉伸100%时电阻的相对变化率仅为4.305%,其指标达到国际领先水平。
2、发展弹性肌电传感器
表面肌电信号(SEMG)是一种伴随肌肉活动出现的微弱生物电信号,在临床医学、人机功效学、康复医学以及体育科学等方面均有重要的实用价值。SEMG 在测量上具有非侵入性、无创伤、操作简单等优点,但信号易受电极影响,因此选择合适的电极显得尤为重要。目前,商业化的肌电电极主要为凝胶电极和金属电极。凝胶电极与皮肤贴合性好,但凝胶中的水分易挥发,时间稳定性差,且易造成皮肤过敏,不能重复使用;金属电极导电性好,但与皮肤的贴合性差,大幅度运动易滑动,导致信号的动态稳定性较差,且易擦伤皮肤。
研究人员利用研发的三层结构超薄弹性电极作为肌电电极,该电极的阻抗在工作频率范围内(20~400Hz)与凝胶电极和金属电极相当,但又克服了凝胶电极时间稳定性差,以及金属电极动态稳定性较差的难题。将三层结构的弹性电极用于测量腿部腓肠肌外侧头肌肉走动时的信号,并与传统铜电极进行对比,可以明显看出,采用三层结构超薄弹性电极测得的肌电信号强了约一个数量级,显示出了较广阔的应用前景。
3、发展柔性/弹性电路、高精度和可拉伸的应变传感
基于液态金属导线,研究人员发展了可回收纸基柔性电路,其电导率达10000S/cm,弯折循环大于1万次,复合热导率是纸的2-3倍,提升了散热性能,回收率达90%每分钟,进一步发展了纸基 LED 显示等演示电路。基于弹性导体,发展了弹性耳机线、弹性充电线等。
利用高灵敏的巨磁阻抗效应,研究人员采用 LC 振荡电路结构,获得了具有数字式脉冲输出的高灵敏柔性压力传感器,探测极限10μN,可以感知蚂蚁的爬行;首次在低压力探测范围同时实现了微应力感知与数字信号输出;发展了兼容高精度和拉伸性的弹性应力传感器,其拉伸范围大于100%,探测精度~0.05%,且具有优异的回复特性。
研究人员发展了智能手套,用于手势的识别,并实现了手势对机械手的远程操控;发展了用于膝关节运动监控的智能护膝,实现了跑步、登山等动作下关节运动的监控。
研究人员在材料、器件、方法、设备上进行了专利布局,已经申请专利30项,其中发明专利23项,已授权14项,实用新型专利授权7项。
36)石墨烯助力未来电池可随意编织
能像毛线一样编织,能像纸板一样对折,也能像皮肤一样紧紧贴在身上。这样轻便柔韧的材料居然是电池。容量达到600毫安时每克以上,循环寿命超过1000次,500次以上对半折也不影响其性能……近日,南京大学化学化工学院教授金钟团队在高容量柔性能源器件方面取得的新进展引起了不少人的关注。
从事材料化学领域研究10多年来,金钟利用碳纳米管、石墨烯和无机纳米纤维等材料的高柔韧性和导电性,用来充当储能电极材料的优秀柔性“骨架”。在这些材料的基础上,经过巧妙的结构设计,坚固厚重的电池在金钟课题组的手里逐渐改变了传统的模样。
一般而言,能源器件分两种,一种负责能源存储,一种负责能量转换。前者将电能存储为化学能,在需要使用的时候释放,所对应的是锂离子等储能电池,被称为化学电源器件;后者往往可以将光能等其它形式的能量转换成电能,例如太阳能电池,其所对应的能源器件被称为物理电源器件。
“无论哪种能源器件,如果做成柔性、便携和集成化的,都可能开拓新的应用领域。”在金钟“手”里,电池就好像没了脾气般能变成想要的形状。光电转换效率达到9.5%,可以弯折、缠绕、打结,能够实现仅需7秒钟的快速充电……除了储能电池,金钟课题组在柔性太阳能电池方面也取得了新的成果。
该团队以碳纳米纤维材料为基础,通过修饰TiO2和MoS2二维材料制备出了多功能的同轴纳米复合纤维电极材料。利用这种纤维电极组装了可弯折、可编织的柔性线状太阳能电池和光充电能量纤维,获得了优异的性能,并且能够在光照下快速自发充电。
与传统平面状能源器件相比,纤维状能源器件质量更轻、柔性更好、集成度更高,同时有可能在未来像高分子纤维一样通过纺织技术进行大规模的生产和应用,从而满足各种便携式和可穿戴柔性电子设备的需求。
想象一下未来穿上可以提供电能、发光发热的衣服吧,你的冬天不再冷冰冰。警示服、腕表、射频卡片……柔性电池可以做到让能源随身携带。除了民用,柔性电池也能满足未来信息化作战的能源供应需要。
“在现代化的单兵特种作战装备中,士兵的负荷中有三分之一的重量来自电池,然而现有的电池系统只能续航72小时。”金钟说,“开发质量体积小、续航时间长、输出功率大、安全性高、更适合穿戴的新电池系统,在信息化作战、无人机、水下航行器等国防应用方面具有特别重要的意义。”
厦门柔性电子研究院
福建省协同创新院柔性电子产业技术分院
地址:厦门市集美区集美大道1995号科技成果转化加速器1期4F
邮编:361024 电话:0592-5366222 邮箱:admin@flex-elec.com
部分图片来源于网络,如有侵权请联系删除